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Four finite difference schemes are applied to the numerical integration of the velocity
field for low Reynolds number flows, within the framework of the MAC method. The
numerical solutions are obtained for the square cavity problem at a Reynolds number
equal to 1072, Their comparison shows that the A.D.I. Douglas-Rachford scheme
produces the best results.

1. INTRODUCTION

Flows at low Reynolds numbers constitute a class of practical and techno-
logical importance.

In some simple situations, analytical solutions for creeping flows can be obtained
by using the linearized form of the Navier-Stokes equations [1]. It seems however
that a numerical treatment is the only way for solving complex problems concerned
with geodynamics, lubricant flow, glass flow at high temperature.

Among the numerical techniques which have been developed in recent years, the
Marker-and-Cell (MAC) method [2] has been applied successfully to transient
incompressible viscous flows with free surfaces, such as the splashing drop, the
sloshing in a tank, the breaking of a water wave on a slanting wall, etc. Neverthe-
less, as Pracht [3] has pointed out, the MAC method is restricted to flows for
which the Reynolds number must be greater than one; this follows from numerical
stability considerations on the original equations of the MAC aigorithm, which are
written in explicit form. An extension of the applicability of the MAC technique to
low Reynolds numbers has been devised by Pracht through an implicit iterative
scheme. However, this iterative procedure is time-consuming. At this point, one
may wonder whether it is possible to integrate the Navier-Stokes equations
numerically within the framework of the MAC code by finite difference schemes
which differ from the standard explicit and implicit forms while requiring a faster
production code than the iterative method.

The aim of this paper is the description and the comparison for a sample problem,
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namely, the square cavity problem at a Reynolds number equal to 102, of four
finite difference schemes which are unconditionally stable for the heat equation.
These schemes are also stable for slow flows when the convective terms are negli-
gible with respect to the viscous terms.

In Section 2, the basic equations are presented and some features of the MAC
method are recalled.

In Section 3, the finite difference schemes to be tested are described. Thev are
respectively an alternating direction explicit scheme [4, 5, 6], the odd—even point
Hopscotch algorithm [7] and two A.D.I. methods, one of which is due to McKee
and Mitchell [8] and the other is the well-known Douglas—Rachford scheme.

The fourth section presents the numerical results for the test problem. The last
section is devoted to the discussion of those results. It is shown that the Hopscotch
algorithm cannot be used with an increasing time step. The A.D.E. scheme, as far
as its computational speed is concerned, suffers from numerical dispersion. The
McKee-Mitchell method implies an iterative procedure equivalent to the Pracht’s
method. Finally, the A.D.I. Douglas-Rachford scheme is twice as fast as either of
the overrelaxed iterative methods.

2. Basic EquaTtions. Tee MAC METHOD

Consider the plane motion of an isothermal, incompressible viscous fiuid in a
two-dimensional space referred to rectangular coordinates x and y. Let ¢ denote
time, and let u(x, y, 1), v(x, y, {) represent the velocity components in the x and y
directions, respectively.

For an incompressible fluid, the continuity equation has the form,

(@ufox) + (@0]ay) = 0. 0)

The Navier-Stokes equations can be written as follows,
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where ¢ is the ratio of the pressure to the (constant) density, v is the kinematic
viscosity and V2 the Laplacian operator. We;shall refer to Eq. (1)~(3) as “system I”".
Note that the convective terms in (2) and (3) are expressed in conservative form.
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With the help of (1), the Navier—Stokes equations may also be expressed in a
complete conservative form,
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Egs. (1), (4), and (5) form the “system II”.

We consider the numerical integration of systems I and II by finite differences in
space and time. The rectangular domain of integration is covered by a network of
fixed rectangular cells. Indices ¢ and j indicate the location of cell centers, with i
counting the columns in the x direction, and j counting the rows in the y direction.
The placing of the variables in the grid is indicated in Fig. 1. A belt of boundary
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Fic. 1. Field variable placing in a cell.

cells, surrounding the domain of integration, avoids rewriting the finite difference
equations for cells adjacent to a boundary and allows for a simple handling of the
boundary conditions. The time ¢ is discretized and the current time 7 is equal to
ndt, where n is an integer and 4 the time step.

Various methods for integrating the Navier-Stokes equations have been applied
to a wide class of fluid flow problems (see, for example, Harlow [9]).

Here, we will concentrate our attention on the basic algorithm proposed in the
MAC method {10], which may be characterized by the following features.

1. The velocities at time ¢ = nd¢ are known from the previous cycle of
computation or as initial data.

2. The pressure is obtained in each cell, at time ¢ = nd¢, by solving the
finite difference equation corresponding to the following relation,
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which is obtained from (2) and (3). The finite difference equation is solved by
successive overrelaxation. The optimum accelerating factor is determined during
the computation itself by a method due to Laloux {111, based on a paper by
Carré [12].

3. The finite difference Navier-Stokes equations are used to find the new
velocities in the whole mesh. In the original MAC method, these equations are
of explicit type.

4. The finite difference form of the left-hand side of (1) is computed. If the
absolute nmumerical values are greater than 10-%, a second iterative procedure
proposed by Pracht [13]is introduced for obtaining a higher accuracy.

5. Results are printed. The time is incremented, and the next cycle begins
immediately.

The convective terms of the material derivatives in (2) and (3), or (4) and (5) are
expressed throughout this paper at time ¢ = nds, and in ZIP form, as it has been
suggested by Hirt [14], in order to avoid numerical instability at high Reynolds
number. The ZiP form is defined by the following expression,

(”2)?,9‘ = U 1/2,M541/2,5 - @)

For the original MAC method, a simple von Neuman stability analysis of the
explicit linearized Navier—Stokes equations yields the condition,

wdi < Ax2Ay*[(Ax? + Ay?), {8)

where 4dx and 4y are the mesh sizes. The stability requirement (8) can be related
to the Reynolds number [3] and yields

Re > 1. &)

It is therefore evident that the MAC method is inappropriate for solving low
Reynolds number flows. To overcome this difficulty, Pracht [3] has devised an
implicit scheme for the full Navier—Stokes equations. This method solves steps 2
and 3 in a single iterative process and is time-consuming due to the slow conver-
gence of the first cycles of computation, particularly when one uses a Gauss—Seidel
relaxation method.

The aim of the present paper is to apply various known numerical methods for
the integration of parabolic equations to the calculation of step 3 in the MAC
algorithm. In the next section, we will successively consider an alternating direction
explicit (A.D.E.) method, the “Hopscotch” algorithm, and two A.D.1. methods.



366 MICHEL O. DEVILLE
3. INTEGRATION OF STEP 3

In view of the fact that we limit ourselves to small values of the Reynoids
number, the diffusion terms in system I and IT will be dominant with respect to the
convective terms. In order to obtain in step 3 of the computational procedure the
values of the velocity components at time (n + 1) 4z, we are therefore allowed to
express the convective terms at time n4r.

The finite difference schemes to be tested are applied to the second order partial
differential operators of the Navier-Stokes equations. For the sake of simplicity,
the four schemes are presented below for the simple diffusion equation

ou 2u 2y
EE:”(ax“Layz)' (10)

Let us define the following notation. If u(x, y, ) denotes the solution of the
differential equation, u;; represents the solution of the corresponding finite
difference equation at the mesh point x = idx, y == jdy, and at time ¢ = n4z.
Furthermore, we set,

2 0 rn n k13
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We now describe briefly the four schemes, checking out the points of interest for
our purpose. The reader who wants more details is referred to the original papers,
listed in the bibliography.

A.D.E. Method

Larkin [4], Saul’yev [5] and Barakat—Clark [6] have independently developed an
alternating direction explicit (A.D.E.) scheme.

During the first sweep of the mesh, from left to right, and from bottom to top,
one solves the following equation,

n+1 n n n n+1 n+1
Urig — Wi [ Mirr,g — Ui — Mg 4 Wita
At Adx?
n n n+1 7i-+1
Uiy — Ugg — Uyiy + Uysja 12
+ 7 , (12)

in terms of the auxiliary variable u; .
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A second sweep, from top to bottom and from sight to left, allows for computing
the auxiliary variable u, ,

n+l +1 +1 % K
Ugig — Ui _ [ugz‘+1,5 — Ugiy — Uiy T Wi
At Ax?
n+1 n-+1 n i n
+ Upgjor — Ugg,y — Uiy 1T Usja (13)
Ayz . i
The numerical solution of (10) is obtained by forming the average,
n41 n+1 741
ui; = 0.5 (uyg; + ubi;)- (14)

A simple von Neumann analysis shows that this scheme is unconditionally stable.
For a square cell (dx = Ay = k), its amplification factor u;, is given by

2vdt
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where k is the wave number.

The local accuracy of the scheme is almost O(472 + dx? + 4y?) since the leading
terms of the truncation error of Eqs. (12) and (13) are of opposite sign and hence
tend to cancel each other in the averaging (14).

Hopscotch Method

This algorithm, primarily due to Gordon [15], has been extensively analyzed and
improved by Gourlay [7].

During a first sweep of the network, at mesh points where the sumn -+ { -+ j is
even, Eq. (10) is solved by the explicit relation,

n+1 n 1
Usg — Ui

— 1 2 __L 2 3
Al =V (Axg 31: + Ayz By ) ui,i 5 (}6\‘%

whereas, during a second sweep, at grid points where n + i -~ j is odd, one uses
the implicit relation,

n+l 7
Usg — Uiy _ 1 g, L 2}, mtl (1N
At =7 (Ax2 %+ 4y? 8 ) Uiy an

When the 6,2 and 3,2 operators in (16) and (17) are given by (11), they involve
their nearest neighbors. In this case, Eq. (17) is of explicit type.
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This method can be considered as a new process of splitting-up an A.D.IL.
scheme of the Peaceman—Rachford type. The algorithm always leads to a two-step
process, whatever the number of space dimensions. It is locally (but not globally)
equivalent to the Dufort-Frankel scheme. Gourlay has proved that the method is
stable provided that the ratio 4#/4x? remains constant.

MEKM Method

At first conceived by McKee and Mitchell [8] for partial differential equations
with mixed derivatives this scheme can be applied to Eq. (10) as follows.

[+ G 32 o

=1+ (;,—1—2 S ATERS ZAZ 5,2 + ?Z(A o Lyassu, )
[l+(f ;Zéyll)S ]“ﬁl:“;fer(%"“%%)Szu?g, (19)

where u* is an intermediate value of w1,

For f < 0 or f > 4, McKee and Mitchell have shown that this scheme is un-
conditionally stable. Note that for f = oo, the scheme reduces to the Peaceman—
Rachford one, which has been used by Chorin [16] for the numerical integration
of the Navier-Stokes equations in a twodimensional space.

D. R. Method

Finally, we will consider the well-known unconditionally stable Douglas~
Rachford (D.R) scheme, which can be considered as a perturbation of the backward
implicit method. Its split form is given by the following relationships.

(1 - ZAZ Sw) (1 + ZAZ 5«.,) Uy s (20)
(- 2_4;% %)t = uls - —Zﬁ% 8,1us @1)

For equal spatial sizes, the amplification factor is,

1416 (%) sins 2 .
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4. A Test PrROBLEM: THE SQUARE CAVITY

An isothermal incompressible fluid is contained in a square cavity, with a unit
side length (Fig. 2). The fluid is motionless for 7 < 0. At time 7 = 0, the upper side
is instantaneously set in motion in its own plane at constant unit velocity. A
vanishing reference pressure is fixed at the middie of the bottom side.

U=v=0

- X

Fic. 2. Square cavity model.

The flow induced by the plate creates a circulatory motion. The fluid moves
around a point, called the vortex center, where the velocity vector is zero. Small
countervortices develop in both lower corners. For more extensive details on the
square cavity problem, see Refs. {17, 18].

In this paper, we study the transient flow for a Reynolds number equal {0 107,
by making use of the MAC algorithm with the four proposed schemes for step 3.

All the computations have been performed on a I.B.M. computer 370/155, in
Fortran 1V, G level, double precision, for a 20 X 20 network.

The initial dimensionless time step 4 is equal to 2 - 1075, At cycles 11, 20, 29, 30,
one takes Az = ¢. This leads to time steps respectively equal to 2 - 104, 2 - 103,
0.02, 0.04. In this way, a good description of the transient flow is obtained and the
practical numerical stability of the schemes may be tested. The computation with
the last time step (0.04) continues till the time 1.68 is reached.

The convergence criterion for the pressure equation is written as,

kol — 1kt
TR < =

where k is an iteration counter. The numerical value of ¢, for all the computations
has been taken equal to 2 - 10-%. The convergence criterion of the second iterative
process in step 4 has the same form as Eq. (23) and « takes the value 2 - 10-5.

The M.K.M. and D.R. schemes integrate system I, whereas the A.D.E. and
Hopscotch algorithms deal with system I1.
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Fairly good results were produced by the Hopscotch method during the ten first
cycles of computation. Unfortunately, after the first increase of the time step, the
method diverges in two cycles, and horizontal velocity components greater than
one appear. This is due to the fact that unconditional stability is only implied by
ratios 4¢/Ax? constant, However, we have to mention that better and stable results
were obtained by the “Line Hopscotch™ algorithm (cf. [19] for further details on
the Line Hopscotch process).

The M.K.M. scheme presented numerical oscillations from cycle 11 onwards.
Table I shows the evolution of the u-velocity component on the symmetry axis of

TABLE 1

Evolution of the Horizontal Velocity Component Near
the Moving Plate for the MKM Scheme

Cycle F=12 F= -4 F=o
11 0.85540 0.85191 0.85596
12 0.84419 0.83856 0.84417
13 0.86232 0.86096 0.86217
14 0.83972 0.83239 0.84067

the cavity at a distance 4y/2 under the moving plate, for f = —4, 12, and . One
verifies that the scheme slowly diverges and oscillates around the value 0.85313,
obtained by Greenspan [20] for the steady-state problem at zero Reynolds number.

Complete solutions for the transient flow till the steady state have been carried
out by the A.D.E., D.R. and Pracht iterative methods. Table Il compares the

TABLE II

Comparison of the Differences Between the Numerical Solutions by the
Proposed Scheme and That by the Greenspan Method

Method ADE PRACHT DR

0(10-2 — 10-9) 0(10-* — 10-4) 0(10-* — 10-5)

differences between the results given by these schemes and those by the Greenspan
method, cited above, for the steady-state horizontal velocity component on the
symmetry axis. It is established that the D.R values are close to those by
Greenspan.

Table III gives the C.P.U. times for a complete execution (70 cycles) of
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TABLE Il
CPU Times for Various Methods

PRACHT
Method ADE D.R. Gauss—Seide! Overrelaxed
CPU time 19 min 34 sec 12 min 19 sec 41 min 58 sec 24 min 11 sec

the problem by these various algorithms. One can see that the computational speed
of the D.R. scheme is twice that of Pracht’s overrelaxed method. The time saving
is a consequence of the direct inversion of the algebraic system.

5. DiscussioN

The amplification factor p of Eq. (10) is usually defined as the amplitude ratic of
a harmonic wave a(?) exp((—1)*/?k - x) at time ¢ + A¢ and at time¢. (k-x isa
scalar product). By (10), one finds,

= exp[—~v(kw2 + k'yz) ZL {24>

where k, and k, denote the wave numbers in the x and y directions, respectively.
They are related to the corresponding wave length A, and A, by the expressions
k, = 2m/A, and k, = 2=7/A, .

We will suppose, for the sake of clarity, that k, = k, = k and dx = 4y = k.
By replacing ¢ by one time step 4z, Eq. (24) becomes,

p = exp[— (udi/E)Eh)Y]. 25)

As we have denoted the amplification factor of the corresponding finite difference
equations by p; , we may define the numerical dissipation « and the numerical
dispersion B of a wave as,

a=|p|—|pl, B = arg(p/pn)- (26)

By (25) and (26), in the case of a pure diffusion equation, the finite difference
scheme must be such that its amplification factor is real, hence achieving a vanishing
numerical dispersion. It should also be as close as possible to the value given by
Eq. (25) in order to minimize the numerical dissipation.

By (15) and (22), one sees that the A.D.E. scheme involves a nonvanishing
numerical dispersion, whereas the D.R. scheme is free from this shortcoming.
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Fic. 3. Amplification factor modulus versus phase angle.

Figure 3 displays the evolution of the amplification factor moduli of (15), (22)
and (25) versus the phase angle 8 = k#, for time steps equalto 2 - 10~3and 2 - 10~

It appears that the amplification factor moduli for (15) and (22) are rather far
away from that of the exact solution (25). Particularly, the A.D.E. scheme does not
present any damping of the perturbations generated either by round-off error or by
a brutal increase of the time step. Indeed, for 4¢ = 2 - 104, its modulus remains
near one. This phenomenon, conjugated with numerical dispersion, leads to worse
D, ; for this scheme than for the D.R. one. As a result, the correction iterative
procedure on the continuity equation converges more slowly, and the C.P.U. time
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is therefore about 1.6 times longer than for the D.R. method. Furthermore,
extension of this method to free surface flows is not a trivial task.

The oscillatory behavior of the M.K.M. scheme can be explained in the following
way. The numerical scheme (18), (19), retains an order of accuracy O(4¢?), but, as
we work with pressure gradients expressed at the old time level, this induces a loss
of accuracy inconsistent with the local accuracy of the scheme. The discretization
error remains at the O(4r) level, and it is particularly sensitive near the boundaries
of the flow region. To avoid this defect, we have to integrate iteratively step 2 and 3,
as has been proposed by Pracht, thus obtaining a slow production code.

However, the f parameter introduced by McKee and Mitchell can be used in
order to minimize the numerical dissipation. One knows that the A = 24x waves
(8 = ) are the finest ones that the network can support. In case of any perturbation
of the numerical field, they grow at the fastest rate. One thus may adjust the f
parameter value in such a way that for = =, the amplification factor modulus of
the M.K.M. finite difference scheme is the same as for the exact solution (25),
namely p = exp[—2v4162/h*]. One obtains a curve for w, lying very close to that
given by (25). Nevertheless, one has to be careful that this f value does not involve
an undue growth of the principal part of the truncation error, and respects the
stability requirements.

We have seen that the D.R. scheme is a good one. Its accuracy is convenient; its
computational speed is twice that of Pracht’s method. Its stability for an increase
of time step is remarkable.

In conclusion, we have adopted the application of the Douglas-Rachford scheme
for the numerical integration of the Navier-Stokes equations at low Reynolds
numbers, within the framework of the MAC method, because it is accurate, fast,
and easily programmed.

We will consider its application to viscous free surface flows in a forthcoming

paper.
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