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Four fmite difference schemes are applied to the numerical integration of the velocity 
field for low Reynolds number flows, within the framework of the MAC method. The 
numerical solutions are obtained for the square cavity problem at a Reynolds number 
equal to lo-%. Their comparison shows that the A.D.I. Douglas-Rachford scheme 
produces the best results. 

1. INTRODUCTION 

Flows at low Reynolds numbers constitute a class of practical and techno- 
logical importance. 

In some simple situations, analytical solutions for creeping flows can be obtained 
by using the linearized form of the Navier-Stokes equations [I]. It seems however 
that a numerical treatment is the only way for solving complex problems concerned 
with geodynamics, lubricant flow, glass flow at high temperature. 

Among the numerical techniques which have been developed in recent years, the 
Marker-and-Cell (MAC) method [2] has been applied successfully to transient 
incompressible viscous flows with free surfaces, such as the splashing drop, the 
sloshing in a tank, the breaking of a water wave on a slanting wall, etc. Neverthe- 
less, as Pracht [3] has pointed out, the MAC method is restricted to flows for 
which the Reynolds number must be greater than one; this follows from numerical 
stability considerations on the original equations of the MAC algorithm, which are 
written in explicit form. An extension of the applicability of the MAC technique to 
low Reynolds numbers has been devised by Pracht through an implicit iterative 
scheme. However, this iterative procedure is time-consuming. At this point, one 
may wonder whether it is possible to integrate the Navier-Stokes equations 
numerically within the framework of the MAC code by finite difference schemes 
which differ from the standard explicit and implicit forms while requiring a faster 
production code than the iterative method. 

The aim of this paper is the description and the comparison for a sample problem, 
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namely, the square cavity problem at a Reynolds number equal to 1C2, of four 
finite difference schemes which are uneonditionahy stable for the beat equatio 
These schemes are also stable for slow flows when the convective terms are negli- 
gible with respect to the viscous terms. 

In Section 2, the basic equations are presented and some features of the 
method are recalled. 

In Section 3, the finite difference schemes to be tested are described. They are 
respectively an alternating direction explicit scheme [4, 5, $3, the odd-evm point 

scotch algorithm [7] and two A.D.I. methods, one of which is due to ee 
itch& [8] and the other is the well-known ~ong~as-~ac~ford scheme. 

The fourth section presents the numerical results for the test problem. The last 
section is devoted to the discussion of those results. It is shown that the 
algorithm cannot be used with an increasing time step. The A.D.E. scheme, as far 
as its computational speed is concerned, suffers from numerical dispersions The 
~cKee-~~t~he~~ method implies an iterative procedure equivalent to the Pracht’s 
method. Finally, the A.D.I. Douglas-Rachford scheme is twice as fast as either of 
the overrelaxed iterative methods. 

2. BASIC EQUATIONS. THE NIpbC ~VETRQI) 

Consider the plane motion of an isothermal, incompressible viscous A.uid in a 
two-dimensional space referred to rectangular coordinates x and y. Let t denote 
time, and let U(X, y, t), v(x, y, t) represent the velocity components in the x an 
directions, respectively. 

For an incompressible fluid, the continuity equation has the form, 

(au/ax) + (av/ay) = 0. m 
The Navier-Stokes equations can be written as follows, 

au au2 au0 a+ z+z+s=-x f vma, 

where 4 is the ratio of the pressure to the (constant) density, v is the kinematic 
viscosity and V2 the Laplacian operator. Weshall refer to Eq. (l)-(3) as “system I”. 
Note that the convective terms in (2) and (3) are expressed in conservative form. 
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With the help of (l), the Navier-Stokes equations may also be expressed in a 
complete conservative form, 

(4) 

Eqs. (l), (4), and (5) form the “system II”. 
We consider the numerical integration of systems I and II by finite differences in 

space and time. The rectangular domain of integration is covered by a network of 
fixed rectangular cells. Indices i and j indicate the location of cell centers, with i 
counting the columns in the x direction, andj counting the rows in the y direction. 
The placing of the variables in the grid is indicated in Fig. 1. A belt of boundary 

FIG. 1. Field variable placing in a cell. 

cells, surrounding the domain of integration, avoids rewriting the finite difference 
equations for cells adjacent to a boundary and allows for a simple handling of the 
boundary conditions. The time t is discretized and the current time t is equal to 
nd t, where n is an integer and d t the time step. 

Various methods for integrating the Navier-Stokes equations have been applied 
to a wide class of fluid flow problems (see, for example, Harlow [9]). 

Here, we will concentrate our attention on the basic algorithm proposed in the 
MAC method [IO], which may be characterized by the following features. 

1. The velocities at time t = ndt are known from the previous cycle of 
computation or as initial data. 

2. The pressure is obtained in each cell, at time t = &It, by solving the 
finite difference equation corresponding to the following relation, 

aw 
~2+-~(%+!?)-~-2~-- 

axay ap 3 (6) 
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which is obtained from (2) and (3). The finite difference equation is solved by 
successive overrelaxation. The optimum accelerating factor is determined during 
the computation itself by a method due to LaPoux [II]: based on a paper by 
Carre [12]. 

3. The finite difference Navier-Stokes equations are used to find the new 
velocities in the whole mesh. In the original MAC method, these equations are 
of explicit type. 

4. The finite difference form of the left-hand side of (I) is computed. If the 
absolute numerical values are greater than 1tY3, a second iterative ~ro~~d~~~ 
proposed by Pracht [ 131 is introduced for obtaining a higher accuracy. 

5. esults are printed. The time is incremented, and the next cycle begins 
immediately. 

The convective terms of the material derivatives in (2) and (3) or (4) and (5) are 
expressed throughout this paper at time t = nLI t, and in ZIP form, as it has been 

irt [14], in order to avoid numerical insta 
number. The ZIP form is defined by the following expression, 

(U”>T,~ = 4-mG+l,B,~ . (71 

For the original MAC method, a simple von Neuman stability analysis of the 
explicit linearized Navier-Stokes equations yields the condition, 

where dx and L3y are the mesh sizes. The stability requirement (8) can be related 
to the Reynolds number [3] and yields 

Re> 1. $99 

It is therefore evident that the MAC method is inappropriate for solving low 
Reynolds number flows. To overcome this difficulty, Pracht [3] has devised ars 
implicit scheme for the full Navier-Stokes equations. This method solves st 
and 3 in a single iterative process and is time-consuming due to the slow co 
gence of the frrst cycles of computation, particularly when one uses a ~a~ss-Se~d~~ 
relaxation method. 

The aim of the present paper is to apply various known numerical metho 
the integration of parabolic equations to the calculation crf step 3 in the 
algorithm. In the next section, we will successively consider an altern 
explicit (A.D.E.) method, the “Hopscotch” algorithm, and two A 
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3. INTEGRATION OF STEP 3 

In view of the fact that we limit ourselves to small values of the Reynolds 
number, the diffusion terms in system I and II will be dominant with respect to the 
convective terms. In order to obtain in step 3 of the computational procedure the 
values of the velocity components at time (n + 1) dt, we are therefore allowed to 
express the convective terms at time nB t. 

The finite difference schemes to be tested are applied to the second order partial 
differential operators of the Navier-Stokes equations. For the sake of simplicity, 
the four schemes are presented below for the simple diffusion equation 

(10) 

Let us define the following notation. If u(x, y, t) denotes the solution of the 
differential equation, z& represents the solution of the corresponding finite 
difference equation at the mesh point x = idx, y = joy, and at time t = ndt. 
Furthermore, we set, 

s,2u& = uz”,1,j - 224& + u;-,,j , 
(11) 

6 Q? zzz u? II z&J w+1 - 2u& + utj-1. 

We now describe briefly the four schemes, checking out the points of interest for 
our purpose. The reader who wants more details is referred to the original papers, 
listed in the bibliography. 

A.D.E. Method 

Larkin [4], Saul’yev [5] and Barakat-Clark [6] have independently developed an 
alternating direction explicit (A.D.E.) scheme. 

During the first sweep of the mesh, from left to right, and from bottom to top, 
one solves the following equation, 

n+1 12 
Uli,j - U&j = v 

[ 

n 
%Ttl,j - ui,g - u;;; + U~~~~,j 

At AX2 

in terms of the auxiliary variable u1 . 
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A second sweep, from top to bottom and from sight to left, allows for ~orn~~ti~~ 
the auxiliary variable u2 , 

12+1 12 
fJ2i,j - %,i = 

?%+1 12+1 

At V 
[ 

U2it1.i - z&j - U.&j 12 + L&j 

AX" 

R+l 
~Zi,~-tl 

w-1 12 i 7L 
+ - %i,j - %,j T %&-I. 

AY2 
(as) 

The numerical solution of (10) is obtained by forming the average, 

u;,;l = 0.5 (t&$ f dg;>. ca4.j 

A simple von Neumann analysis shows that this scheme is ~u~o~~tio~a~~y stable. 
For a square cell (Ax = Ay = h), its amplitication factor pn is given by 

1 _ 2vAt -j-&t- (1 - et”“) 
ph = 

If 
2vAt -p- (1 - e-i”“) 

(15) 

where k is the wave number. 
The local accuracy of the scheme is almost Q(At2 -+ Ax2 f dy3 since the leading 
terms of the truncation error of Eqs. (12) and (13) are of opposite sign and hence 
tend to cancel each other in the averaging (14). 

Hopscotch Method 

This algorithm, primarily due to Gordon [I 51, has been extensively analyzed an 
improved by Gourlay [7]. 

a first sweep of the network, at mesh points where the sum y1 i i i j is 
. (10) is solved by the explicit relation, 

whereas, during a second sweep, at grid points where n + i f j is odd, one uses 
the implicit relation, 

n+1 la ui,j - ui,j _ 
At -v &3,“t ( (1-i) 

When the a,2 and ati2 operators in (16) and (17) are given by (II), they involv 
their nearest neighbors. In this case, Eq. (17) is of explicit type. 



368 MICHEL 0. DEVILLE 

This method can be considered as a new process of splitting-up an A.D.I. 
scheme of the Peaceman-Rachford type. The algorithm always leads to a two-step 
process, whatever the number of space dimensions. It is locally (but not globally) 
equivalent to the Dufort-Frankel scheme. Gourlay has proved that the method is 
stable provided that the ratio dt/dx2 remains constant. 

MKM Method 

At first conceived by McKee and Mitchell [8] for partial differential equations 
with mixed derivatives this scheme can be applied to Eq. (10) as follows. 

where u* is an intermediate value of ~“+l. 
For f < 0 or f 3 4, McKee and Mitchell have shown that this scheme is un- 

conditionally stable. Note that for f = co, the scheme reduces to the Peaceman- 
Rachford one, which has been used by Chorin [16] for the numerical integration 
of the Navier-Stokes equations in a twodimensional space. 

D. R. Method 

Finally, we will consider the well-known unconditionally stable Douglas- 
Rachford @.R) scheme, which can be considered as a perturbation of the backward 
implicit method. Its split form is given by the following relationships. 

For equal spatial sizes, the amplification factor is, 

1 + 16 r$)” sin*? 
ph = 

1 $ 4 $ sin2 F)” 
(22) 
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4. A TEST PROBLEM: THE SQUARE CAVITY 

An isothermal incompressible fluid is contained in a square cavity, with a unit 
side length (Fig. 2). The fluid is motionless for t < . At time t = 0, the upper side 
is instantaneously set in motion in its own plane at constant unit velocity. A 
vanishing reference pressure is fixed at the middle of the bottom side. 

FIG. 2. Square cavity model. 

ow induced by the plate creates a circulatory motion. The fluid moves 
point, called the vortex center, where the velocity vector is zero. S 

countervortices develop in both lower corners. For more extensive details on the 
square cavity problem, see Refs. [17, 181. 

In this paper, we study the transient flow for a Reynolds rmmber equal to lO--2, 
by making use of the MAC algorithm with the four proposed schemes for ste 

All the computations have been performed on a I.B.M. computer 370/l 
Fortran IV, G level, double precision, for a 20 x 20 network, 

The initial dimensionless time step At is equal to 2 * 10-s. At cycles 11,20,29, 3 
one takes fit = t. This leads to time steps respectively equal to 2 . 1W4, 2 . IO-“, 
0.02, 0.04. In this way, a good description of the transient flow is obtained and the 
practical numerical stability of the schemes may be tested. The ~orn~utati~~ wit 
the last time step (0.04) continues till the time 1.68 is reached. 

The convergence criterion for the pressure equation is written as, 

where k is an iteration counter. The numerical value of Ed for all the ~ornput~~i~~s 
has been taken equal to 2 ’ lo-*. The convergence criterion of the second ~tera~~~~ 
process in step 4 has the same form as Eq. (23) and f takes the value 2 s 1 

The M.K.M. and D.R. schemes integrate system I, whereas the 
Hopscotch algorithms deal with system II. 
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Fairly good results were produced by the Hopscotch method during the ten first 
cycles of computation. Unfortunately, after the first increase of the time step, the 
method diverges in two cycles, and horizontal velocity components greater than 
one appear. This is due to the fact that unconditional stability is only implied by 
ratios At/Ax2 constant. However, we have to mention that better and stable results 
were obtained by the “Line Hopscotch” algorithm (cf. [I91 for further details on 
the Line Hopscotch process). 

The M.K.M. scheme presented numerical oscillations from cycle 11 onwards. 
Table I shows the evolution of the u-velocity component on the symmetry axis of 

TABLE I 
Evolution of the Horizontal Velocity Component Near 

the Moving Plate for the MKM Scheme 

Cycle F= 12 F= -4 F=w 

11 0.85540 0.85191 0.85596 
12 0.84419 0.83856 0.84417 
13 0.86232 0.86096 0.86217 
14 0.83972 0.83239 0.84067 

the cavity at a distance Ay/% under the moving plate, forf= -4, 12, and co. One 
verifies that the scheme slowly diverges and oscillates around the value 0.85313, 
obtained by Greenspan [20] for the steady-state problem at zero Reynolds number. 

Complete solutions for the transient flow till the steady state have been carried 
out by the A.D.E., D.R. and Pracht iterative methods. Table II compares the 

TABLE II 
Comparison of the Differences Between the Numerical Solutions by the 

Proposed Scheme and That by the Greenspan Method 

Method ADE PRACHT DR 

O(lO-2 - 10-S) O(lO-” - 10-A) O(lO-” - 10-5) 

differences between the results given by these schemes and those by the Greenspan 
method, cited above, for the steady-state horizontal velocity component on the 
symmetry axis. It is established that the D.R values are close to those by 
Greenspan. 

Table III gives the C.P.U. times for a complete execution (70 cycles) of 
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TABLE III 

CPU Times for Various Methods 

PRACHT 

Method AI3E D.R. GaussSeidel 

CPU time 19 min 34 set 12 min 19 set 41 min 58 set 24 min 11 set 

the problem by these various algorithms. One can see that the comp~tat~o~a~ speed 
scheme is twice that of Pracht’s overrelaxed method. The time savin 

is a consequence of the direct inversion of the algebraic system. 

5. DISCUSSION 

The amplification factor p of Eq. (10) is usually defined as the amplitude ratio of 
a harmonic wave U(L) exp((- 1)112 k . x) at time t + dt and at time 1. (k . x is a 
scalar product). By (lo), one finds, 

p = exp[--v(k,2 + kw23 tl, 

where k, and k, denote the wave numbers in the x and y directions, respectively. 
They are related to the corresponding wave length h, and X, by the expressions 
k, = 27T/h, and k, = 2n/h, . 

We will suppose, for the sake of clarity, that k, = k, = k and Bx = dy = h. 
By replacing t by one time step d t, Eq. (24) becomes, 

p = exp[- (2v~t/~2~(kh~2~. (25) 

As we have denoted the amplification factor of the corresponding finite d~ere~~e 
equations by ph , we may define the numerical dissipation a: and the ~urn~ri~a~ 
dispersion /3 of a wave as, 

~=lPl--lIbl, P = w&hJ~ (26) 

By (25) and (26), in the case of a pure diffusion equation, the finite di~ere~~e 
scheme must be such that its amplification factor is real, hence achieving a vanishin 
numerical dispersion. It should also be as close as possible to the value given by 
Eq. (25) in order to minimize the numerical dissipation. 

By (15) and (22), one sees that the A.D.E. scheme s a no~va~s~~~~ 
numerical dispersion, whereas the D.R. scheme is free fr shortcoming. 
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e=kh 

FIG. 3. Amplification factor modulus versus phase angle. 

Figure 3 displays the evolution of the amplification factor moduli of (15), (22) 
and (25) versus the phase angle 0 = kh, for time steps equal to 2 * 1O-5 and 2 * 10-4. 

It appears that the amplification factor moduli for (15) and (22) are rather far 
away from that of the exact solution (25). Particularly, the A.D.E. scheme does not 
present any damping of the perturbations generated either by round-off error or by 
a brutal increase of the time step. Indeed, for At = 2 * 10-4, its modulus remains 
near one. This phenomenon, conjugated with numerical dispersion, leads to worse 
Di,$ for this scheme than for the D.R. one. As a result, the correction iterative 
procedure on the continuity equation converges more slowly, and the C.P.U. time 
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is therefore about 1.6 times longer than for the D.R. method. ~urt~ermore~ 
extension of this method to free surface flows is not a trivial task. 

The oscillatory behavior of the M.K.M. scheme can be explained in the ~~llo~vi~g 
way. The numerical scheme (18), (19), retains an order of accuracy O@t2), but, as 
we work with pressure gradients expressed at the old time level, this induces a Eoss 
of accuracy inconsistent with the local accuracy of the scheme. The d~scret~~at~o~ 
error renaEns at the O(d t) level, and it is particularly sensitive near the bo~~~ar~~s 
of the flow region. To avoid this defect, we have to integrate iteratively step 2 and 3, 
as has been proposed by Pracht, thus obtaining a slow production code. 

wever, the f parameter introduced by ee and Mitchell can used in 
to minimize the numerical dissipation. knows that the h = x waves 

= CT) are the finest ones that the network can support. In case of any 
of the numerical field, they grow at the fastest rate. One thus may adjust the f 
parameter value in such a way that for B = ST, the amplification factor ~od~~~s of 
the .K.M finite difference scheme is the same as for the exact solution (25), 
namely ,U = exp[-22vdtB2/h2]. One obtains a cnrve for pti lying very dose to that 
given by (25). Nevertheless, one has to be careful that thisfvalue does not involve 
an undue growth of the principal part of the truncation error, and respects the 

lity requirements. 
e have seen that the D.R. scheme is a good one. Its accuracy is convenient; its 

speed is twice that of Pracht’s method. Its stability for an increase 
of time step is remarkable. 

In conclusion, we have adopted the application of the Douglas- 
for the numerical integration of the Navier-Stokes equations 
numbers, within the framework of the MAC method, because it is accurate, fast, 
and easily programmed. 

e wig% consider its application to viscous free surface flows in a fo~~eo~~~~ 
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